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SUMMARY 

The spatially third-order accurate QUICK finite difference technique is applied to the solution of the 
depth-integrated equations of motion for steady, subcritical, free surface flow in a wide, shallow, 
rectangular channel with and without an abrupt expansion. The conservative, control-volume discreti- 
zation of the equations of motion and the use of QUICK in approximating required cell and cell face 
average quantities is discussed. Results presented show that it is possible to obtain stable solutions for 
advective free surface flows without resorting to implicit numerical smoothing. 
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INTRODUCTION 

With the growing interest in applying two-equation (k - e )  turbulence closure in numerical 
transport models,'-7 it is unfortunate to note that the finite difference techniques commonly 
employed fail to yield quantitatively acceptable results when applied to the problem of 
strong convective transport.* The failure of these techniques to produce accurate results can 
often be attributed to inherent behavioural errors, such as artificial diffusion associated with 
upwind differencing and the wiggles characteristic of central diff e r e n ~ i n g . ~  As a result, the 
use of these techniques in turbulent flow simulations is questionable, in that it often becomes 
difficult to distinguish between the physical effects due to turbulence closure and numerical 
errors.10-12 

Recently, higher order finite difference techniques have been successfully applied to 
transport problems in both one and two  dimension^.^^'^-'^ One of the more notable 
techniques for steady flow problems is the third-order accurate QUICK (Quadratic Up- 
stream Interpolation for Convection Kinematics) method described by Leonard.8 The 
QUICK finite difference technique which is based on a conservative, control-volume integral 
formulation possesses the desirable convective stability of upwind differencing, but does not 
suffer from significant numerical diffusion. 

In this paper, the QUICK differencing technique is applied to the solution of the 
depth-integrated equations of motion for steady, free surface flow in a wide, shallow, 
rectangular channel with and without an abrupt expansion. The results presented here are a 

* Research Associate. Presently Research Engineer, Oceanweather, Inc., Vicksburg, MS 39180, U S A .  
t Associate Professor 

027 1-209 1/83/060583-08$01.00 
0 1983 by John Wiley & Sons, Ltd. 

Received 22 February 1982 
Revised 3 September 1982 



584 R. S. CHAPMAN AND C. Y. KUO 

first step toward a test application of the two-equation ( k  - E )  turbulence closure model in 
solving the depth-integrated equations of motion for steady free surface flows with separa- 
tion. 

DEPTH-INTEGRATED EQUATIONS OF MOTION 

Under the assumption of a homogeneous, incompressible, viscous flow characterized by a 
hydrostatic pressure distribution, with wind and Coriolis forces neglected, the depth- 
integrated equations of motion are ~ r i t t en ' " '~  

-+A= a h  a(V.h) 
a t  ax, 

in which i, j = 1 , 2  and repeated indices require summation; V, = two dimensional depth- 
averaged velocity vector (u, 0 ) ;  h = water depth; t = time, X ,  = co-ordinate directions (x, y);  
g = acceleration due to gravity; 2,  =channel bottom elevation above an arbitrary datum; 
T~~ =components of the bottom shear stress per unit mass; and TJ =components of the 
depth-integrated effective stress tensor per unit m a s x 6  The bottom stress terms are 
parametrized in accordance with the quadratic shear stress law, namely 

rhi = cv,q ( 3 )  
where q = (a2+ v2)1'2 is the magnitude of the depth-averaged resultant velocity vector; and c 
is a friction coefficient computed from either Manning's or Chezy's equations. The depth- 
integrated effective stress tensor per unit mass is written as 

in which v = kinematic viscosity; V: = horizontal turbulent velocity fluctuations; = three 
dimensional time averaged velocity components; and z = vertical co-ordinate direction. The 
contributions to the effective stress tensor are the viscous stresses, the turbulent Reynolds 
stresses, and the momentum dispersion terms which arise from the non-uniformity of the 
velocity profiles in the vertical direction. In the present work, the effective stress terms are 
neglected to eliminate any possibility of introducing explicit numerical smoothing for 
purposes of stabilizing the solution. 

TWO-DIMENSIONAL 'QUICK' METHOD 

Finite difference equations are obtained by integrating each of the equations of motion over 
the appropriate control cell on a constant space-staggered, square computational grid (Figure 
I) and in time. For example, using a first-order time integration the x-momentum equation 
becomes 

in which AT = time step; AS = space step; S, = cell average bottom slope in the x-direction; 
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Figure 1 .  Computational grid 

quantities in parentheses with subscripts R, L, T, B denote the right, left, top, and bottom 
cell face averages; and the overbar quantities denote cell averages (Figure 2). The required 
cell and cell face average quantities are approximated using a six-point upstream weighted 
quadratic interpolation To illustrate the procedure, consider the computation of 
the right cell face average using the information provided in Figure 3. In this case, the u and 
u velocity components are both positive and directed to the right and up, respectively. 
Combining Newton's forward-diff erence formula in the longitudinal direction with Gauss's 
backward formula in the transverse direction, a quadratic interpolation function is con- 
structed which reads" 

f,.s = (1 - r2 - s2 - s ~ ) f ~ , ~ ~  + 

(UVh)B 

(h), 

Figure 2. Computational cell for x-momentum equation 
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Figure 3. Required information for example cell face average computation 

where r = x/AS, and s = y/AS are local non-dimensional co-ordinates. The right cell face 
average is then computed as follows, 

1 

The spatial integration process used to obtain equation ( 5 )  is not strictly third-order in that 
as a means of reducing computational effort, it is necessary to assume that averages of 
products of field variables are reasonably estimated by products of the individual field 
variable averages. For example, computation of the right cell face average for the pressure 
term, requires that the depth along the cell face be redefined in terms of a cell face average 
add deviation, i.e. 

Then 
112 

hRhRds = (h)$+ 

in which the integral on the right hand side is assumed small. In effect, this assumption 
restricts the difference in magnitudes of field variable deviations between opposing cell faces, 
and should be reflected in the allowable coarseness of the computational grid. 

Finally, the appearance of the time derivative terms in the equations of motion should not 
be misinterpreted as an attempt to address unsteady flow phenomena. Strictly speaking, the 
QUICK method may only be applied to steady problems, and subsequently, the first-order 
time integration employed is simply a convenient way to iterate to a steady solution. 
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EXAMPLE PROBLEMS 

The example problems chosen were flow in a wide rectangular channel with and without an 
abrupt expansion. The model inputs were a longitudinal bottom slope of 0-005, a transverse 
bottom slope of zero, a friction coefficient of 0.018, a grid spacing of 90 ft (27.45 m), and an 
upstream normal depth of 4-726 ft (1.441 m) which corresponds to an arbitrarily chosen flow 
rate per unit width of 30 ft’/s/ft (2-79 m3/s/m). 

For the simple straight wall channel calculations, free-slip wall boundaries were employed 
which allowed a comparison of the computed water surface profile with a fourth order 
Runge-Kutta of the one-dimensional gradually varied flow equation.2” The 
initial condition was to set all depths equal to the upstream normal depth, and all velocities 
equal to zero. At the downstream boundary, the depth was arbitrarily specified at 4.0ft 
(1.22 m) and the velocity was computed by continuity. The upstream boundary condition was 
that of normal flow. Using a time step of 0.75 s, 540 iterations were required to satisfy a 
maximum difference of 0.01 per cent between the QUICK and Runge-Kutta solutions 
(Figure 4). The total number of grid points in the longitudinal direction was 100 of which 
half were depth, and half were velocity points. An average one-dimensional Courant number 
[ = {q  +J(gh)} AT/AS] for the steady solution was approximately 0.15. 

The second example problem included an abrupt expansion with inlet and outlet channel 
widths of 360 ft (109.73 m) and 540 ft (164.59 m), respectively. At wall boundaries, both 
velocity components and the normal gradient in the water surface elevation were set to zero. 
This was accomplished by prescribing the value of image points outside the computational 
domain such that the interpolated cell face averages or gradients coincident with the wall 
were exactly zero. Symmetry was imposed at the channel centre line by requiring that the 
transverse gradients of the longitudinal velocity component and the depth were equal to 
zero. The transverse velocity component was treated as if the channel centre line was a wall 
boundary. The upstream and downstream boundaries were positioned sufficiently far from 
the expansion so that specification of uniform flow was appropriate. At the outset of the 
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Figure 4. Comparison of computed water surface profiles for straight channel 
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Figure 5. Computed water surface elevations for channel expansion 

simulation, all depths were set equal to the upstream normal depth, and both velocity 
components were set to zero. In this calculation, 3500 iterations using a time step of 0-4s  
yielded a solution which satisfied an error tolerance based on the difference between 
computed inflows and outflows of 0.01 per cent. An average two-dimensional Courant 
number [ = {q +J(2gh)} ATIAS] was found to be about 0.1, and the CPU time required was 
approximately 12 min on an IBM 3032. The results of the abrupt expansion calculation are 
presented in Figure 5 ,  a three-dimensional plot of the water surface elevations and Figure 6, 
a plot of the depth-averaged velocity vectors. 

The significance of the results presented becomes apparent when one attempts to repeat 
the test computations using linear interpolation for cell and cell face averages, i.e. central 
differencing. In trial runs with both the one and two-dimensional problems, central diff erenc- 
ing failed to produce steady solutions in either case. The inability of the forward time central 
space difference procedure to achieve stable, montonic solutions results from the well-known 
static instability wiggles, which ultimately caused the computations to breakdown. 

Interestingly enough, the disastrous effect of wiggles is independent of whether the 
advective transport terms are linear, as in the case of scalar transport with a uniform velocity 

NOTE: GRID POINTS ARE LOCATED AT THE 2 9  
0 1 q1NLET MIDPOINT OF THE VELOCITY VECTORS 

Figure 6. Computed depth-averaged velocity field for channel expansion 
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Figure 7. Computed depth-averaged velocity field for channel expansion with the non-linear advective acceleration 
terms omitted 

field, or non-linear, as in the present study.' The significance of retaining the non-linear 
advective acceleration terms was investigated by simply setting these terms to zero in the 
momentum equations, (equation (2)), and repeating the channel expansion simulation using 
both QUICK and the central difference procedure. As expected, QUICK provided a steady 
state solution quite similar to that depicted in Figure 6, however, with the exception of local 
differences seen in the velocity field in the corner region (Figure 7). The analogue of Figure 
5 ,  which exhibited no detectable differences at the scale plotted, is not presented. On the 
other hand, the central difference procedure again failed to converge to a steady solution. 
Although non-convergence is not surprising, it is interesting to note that the central 
difference calculation with the non-linear advective acceleration terms omitted required 
more than three times the number of iterations, prior to breaking down, than the simulation 
performed with the advective accelerations retained. This result clearly illustrates the 
aggravating effect of the non-linear advective acceleration terms and, consequently, suggests 
that the inherent advective stability exhibited by QUICK is an essential feature of any 
numerical technique that is to be applied in the modelling of complex free surface flows. 

CONCLUSIONS 

The spatially third-order accurate QUICK finite difference technique has been applied to the 
solution of the depth-integrated equations of motion for steady, free surface flow in a wide, 
shallow, rectangular channel with and without an abrupt expansion. Results presented show 
that it is possible to obtain stable, monotonic solutions to advective free surface flow 
problems without having to resort to implicit or explicit numerical smoothing. Comparison of 
the one-dimensional water surface profile computation with the Runge-Kutta calculation 
suggests that the QUICK technique is not only stable, but accurate. 

Finally, based on the success with QUICK, to date, it is believed the computational 
procedure presented is an appropriate choice for a future test application of the two- 
equation ( k  - e )  turbulence closure model insolving the depth-integrated equations of motion 
for steady, free surface flows with separation. 
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